Skip to main content

Section 12.3 Absolute Value Equations and Inequalities

Whether it's a washer, nut, bolt, or gear, when a machine part is made, it must be made to fit with all of the other parts of the system. Since no manufacturing process is perfect, there are small deviations from the norm when each piece is made. In fact, manufacturers have a range of acceptable values for each measurement of every screw, bolt, etc.

Let's say we were examining some new bolts just out of the factory. The manufacturer specifies that each bolt should be within a tolerance of 0.04 mm to 10 mm in diameter. So the lowest diameter that the bolt could be to make it through quality assurance is 0.04 mm smaller than 10 mm, which is 9.96 mm. Similarly, the largest diameter that the bolt could be is 0.04 mm larger than 10 mm, which is 10.04 mm.

Summarizing, we want the difference between the actual diameter and the specification to be less than or equal to 0.04 mm. Since absolute values are used to describe distances, we can summarize our thoughts mathematically as \(\abs{x-10}\le 0.04\text{,}\) where \(x\) represents the diameter of an acceptably sized bolt, in millimeters. Since the minimum value is 9.96 mm and the maximum value is 10.04 mm, our range of acceptable values should be \(9.96 \le x \le 10.04\text{.}\)

In this section, we will examine a variety of problems and applications that relate to this sort of math with absolute values.

Subsection 12.3.1 Solving Absolute Value Equations

Recall in Section 12.1 that we learned that graphs of absolute value function are in general shaped like “V” s. We can now solve some absolute value equations graphically.

Example 12.3.1.

Solve the equations graphically using the graphs provided.

  1. \(\displaystyle \abs{x}=3\)

    A Cartesian graph with the graph of y=abs(x);the graph has a V shape with the vertex of the V at the origin;the line on the right side has a slope of 1;the line on the left side has a slope of -1
  2. \(\displaystyle \abs{2x+3}=5\)

    A Cartesian graph with the graph of y=abs(x);the vertex of the V shape is at the point (-1.5,0);the line on the right side has a slope of 2 and the left side extends with slope -2.
Explanation

To solve the equations graphically, first we need to graph the right sides of the equations also.

  1. \(\abs{x}=3\)

    A Cartesian graph with the graphs of y=abs(x) and y=3;the vertex of the V shape is at the origin. The right side has a slope of 1 and the left side has a slope of -1;the graph of y=3 is a horizontal line at y=3;the two graphs intersect at (-3,3) and (3,3)

    Since the graph of \(y=\abs{x}\) crosses \(y=3\) at the \(x\)-values \(-3\) and \(3\text{,}\) the solution set to the equation \(\abs{x}=3\) must be \(\{-3,3\}\text{.}\)

  2. \(\abs{2x+3}=5\)

    A Cartesian graph with the graphs of y=abs(2x+3) and y=5;the vertex of the V shape is at the point (-1.5,0);the right side has a slope of 2 and the left side has a slope of -2;the graph of y=5 is a horizontal line at y=5;the two graphs intersect at (-4,5) and (1,5)

    Since the graph of \(y=\abs{2x+3}\) crosses \(y=5\) at the \(x\)-values \(-4\) and \(1\text{,}\) the solution set to the equation \(\abs{2x+3}=5\) must be \(\{-4,1\}\text{.}\)

Remark 12.3.2.

At this point, please note that there is a big difference between the expression \(\abs{3}\) and the equation \(\abs{x}=3\text{.}\)

  1. The expression \(\abs{3}\) is describing the distance from \(0\) to the number \(3\text{.}\) The distance is just \(3\text{.}\) So \(\abs{3}=3\text{.}\)

  2. The equation \(\abs{x}=3\) is asking you to find the numbers that are a distance of \(3\) from \(0\text{.}\) We saw in Explanation 12.3.1.1 that these two numbers are \(3\) and \(-3\text{.}\)

Example 12.3.3.
  1. Verify that the value \(4\) is a solution to the absolute value equation \(\abs{2x-3}=5\text{.}\)

  2. Verify that the value \(\frac{3}{2}\) is a solution to the absolute value equation \(\abs{\frac{1}{6}x-\frac{1}{2}}=\frac{1}{4}\text{.}\)

Explanation
  1. We will substitute the value \(\substitute{4}\) into the absolute value equation \(\abs{2x-3}=5\text{.}\) We get:

    \begin{align*} \abs{2x-3}\amp=5\\ \abs{2\cdot\substitute{4}-3}\amp\stackrel{?}{=}5\\ \abs{8-3}\amp\stackrel{?}{=}5\\ \abs{5}\amp\stackrel{\checkmark}{=}5 \end{align*}
  2. We will substitute the value \(\substitute{\frac{3}{2}}\) into the absolute value equation \(\abs{\frac{1}{6}x-\frac{1}{2}}=\frac{1}{4}\text{.}\) We get:

    \begin{align*} \abs{\frac{1}{6}x-\frac{1}{2}}\amp=\frac{1}{4}\\ \abs{\frac{1}{6}\cdot\substitute{\frac{3}{2}}-\frac{1}{2}}\amp\stackrel{?}{=}\frac{1}{4}\\ \abs{\frac{1}{4}-\frac{1}{2}}\amp\stackrel{?}{=}\frac{1}{4}\\ \abs{-\frac{1}{4}}\amp\stackrel{\checkmark}{=}\frac{1}{4} \end{align*}

Now we will learn to solve absolute value equations algebraically. To motivate this, we will think about what an absolute value equation means in terms of the “distance from zero” definition of absolute value. If

\begin{equation*} \abs{X}=n\text{,} \end{equation*}

where \(n\ge0\text{,}\) then this means that we want all of the numbers, \(X\text{,}\) that are a distance \(n\) from \(0\text{.}\) Since we can only go left or right along the number line, this is describing both \(X=n\) as well as \(X=-n\text{.}\)

a number line graph with a point labeled at n and -n;both points are n units from 0
Figure 12.3.4. A Numberline with Points a Distance \(n\) from \(0\)

Let's summarize this with a fact.

Example 12.3.6.

Solve the absolute value equations using Fact 12.3.5. Write solutions in a solution set.

  1. \(\displaystyle \abs{x}=6\)

  2. \(\displaystyle \abs{x}=-4\)

  3. \(\displaystyle \abs{5x-7}=23\)

  4. \(\displaystyle \abs{14-3x}=8\)

  5. \(\displaystyle \abs{3-4x}=0\)

Explanation
  1. Fact 12.3.5 says that the equation \(\abs{x}=6\) is the same as

    \begin{equation*} x=6\text{ or } x=-6\text{.} \end{equation*}

    Thus, the solution set is \(\{6,-6\}\text{.}\)

  2. Fact 12.3.5 doesn't actually apply to the equation \(\abs{x}=-4\) because the value on the right side is negative. How often is an absolute value of a number negative? Never! Thus, there are no solutions and the solution set is the empty set, denoted \(\emptyset\text{.}\)

  3. The equation \(\abs{5x-7}=23\) breaks into two pieces, each of which needs to be solved independently.

    \begin{align*} 5x-7\amp=23\amp\amp\text{or}\amp 5x-7\amp=-23\\ 5x\amp=30\amp\amp\text{or}\amp 5x\amp=-16\\ x\amp=6\amp\amp\text{or}\amp x\amp=-\frac{16}{5} \end{align*}

    Thus, the solution set is \(\left\{5,-\frac{16}{5}\right\}\)

  4. The equation \(\abs{14-3x}=8\) breaks into two pieces, each of which needs to be solved independently.

    \begin{align*} 14-3x\amp=8\amp\amp\text{or}\amp 14-3x\amp=-8\\ -3x\amp=-6\amp\amp\text{or}\amp -3x\amp=-22\\ x\amp=2\amp\amp\text{or}\amp x\amp=\frac{22}{3} \end{align*}

    Thus, the solution set is \(\left\{2,\frac{22}{3}\right\}\)

  5. The equation \(\abs{3-4x}=0\) breaks into two pieces, each of which needs to be solved independently.

    \begin{align*} 3-4x\amp=0\amp\amp\text{or}\amp 3-4x\amp=-0\\ \end{align*}

    Since these are identical equations, all we have to do is solve one equation.

    \begin{align*} 3-4x\amp=0\\ -4x\amp=-3\\ x\amp=\frac{3}{4} \end{align*}

    Thus, the equation \(\abs{3-4x}=0\) only has one solution and the solution set is \(\left\{\frac{3}{4}\right\}\text{.}\)

Subsection 12.3.2 Solving Absolute Value Inequalities

Now we turn our attention away from equations and onto absolute value inequalities. Don't dismiss this topic as it will actually be used in some capacity in many subsequent math courses.

For a verbal approach to understanding the concept, let's try to describe “values that are less than \(4\) units from \(0\text{.}\)” We would say that those are “numbers between \(-4\) and \(4\text{.}\)” Let's translate each sentence into math. “Values that are less than \(4\) units from \(0\)” translates to “\(\abs{x}\lt 4\text{,}\)” and the piece “numbers between \(-4\) and \(4\)” translates to be “\(-4 \lt x \lt 4\text{.}\)”

For a graphical interpretation, let's think in terms of the “distance from zero” definition of absolute value. If

\begin{equation*} \abs{X}\le n\text{,} \end{equation*}

where \(n\ge0\text{,}\) then we want all of the numbers, \(X\text{,}\) that are a distance \(n\) or less from \(0\text{.}\) Since we can only go left or right along the number line, this is describing all numbers from \(-n\) to \(n\text{.}\)

Figure 12.3.7. A Numberline with Points a Distance \(n\) or less from \(0\)
Example 12.3.9.

Solve the absolute value inequalities using Fact 12.3.8.

  1. \(\displaystyle \abs{x} \le 9\)

  2. \(\displaystyle \abs{x} \lt -6\)

  3. \(\displaystyle \abs{4x+3} \lt 9\)

  4. \(\displaystyle 3\cdot\abs{3-x}+1\le 13\)

Explanation
  1. The inequality \(\abs{x} \lt 9\) breaks down into a double inequality:

    \begin{equation*} -9 \le x \le 9 \end{equation*}

    This inequality is already written in simplest form and all that remains for us to do is to write the solution set in interval notation: \([-9,9]\text{.}\)

  2. Fact 12.3.8 doesn't apply to the inequality \(\abs{x} \lt -6\) because the right side is a negative number. Let's translate the meaning of the inequality into English. It says, “The distance from \(0\) to what numbers is less than \(-6\text{?}\)” Since we define distance to be non-negative, there are no possible numbers that are less than \(-6\) units distance from \(0\text{.}\) Thus, the solution set is the empty set, denoted \(\emptyset\text{.}\)

  3. The inequality \(\abs{4x+3} \lt 9\) breaks down into a triple inequality that we can then solve:

    \begin{gather*} -9 \lt 4x+3 \lt 9\\ -9\subtractright{3} \lt 4x+3\subtractright{3} \lt 9\subtractright{3}\\ -12 \lt 4x \lt 6\\ \divideunder{-12}{4} \lt \divideunder{4x}{4} \lt \divideunder{6}{4}\\ -3 \lt x \lt \frac{3}{2} \end{gather*}

    So, the solution set to the inequality is \(\left(-3,\frac{3}{2}\right)\text{.}\)

  4. The inequality \(3\cdot\abs{3-x}+1\le 13\) must be simplified into the form that matches Fact 12.3.8, so we will first isolate the absolute value expression on the left side of the inequality:

    \begin{align*} 3\cdot\abs{3-x}+1 \amp \le 13\\ 3\cdot\abs{3-x} \amp\le 12\\ \abs{3-x} \amp\le 4 \end{align*}

    Now that we have the absolute value isolated, we can rewrite it into a double inequality that we can finish solving:

    \begin{align*} -4 \amp \le 3-x \le 4\\ -4\subtractright{3} \amp \le 3-x \subtractright{3} \le 4 \subtractright{3}\\ -7 \amp\le -x \le 1\\ \divideunder{-7}{-1} \amp \mathbin{\highlight{\ge}} \divideunder{-x}{-1} \mathbin{\highlight{\ge}} \divideunder{1}{-1}\\ 7 \amp \ge x \ge -1 \end{align*}

    So, the solution set to the inequality is \([-1,7]\text{.}\)

Example 12.3.10.

If a machined circular washer must have a circumference that is within 0.2 mm of 36 mm, then what is the acceptable range for the radius of the washer? Round your answers to the nearest hundredth of a millimeter.

Explanation

We will first define the radius of the washer to be \(r\text{,}\) measured in millimeters. The formula \(C=2\pi r\) gives us the circumference, \(C\text{,}\) of a circle with radius \(r\text{.}\) Now we know that “distance” between the circumference and our preferred circumference of 36 mm must be less than or equal to 0.2 mm. In math, this translates to

\begin{equation*} \abs{C-36} \le 0.2 \end{equation*}

Now we can substitute our formula for circumference and solve for \(r\text{.}\)

\begin{align*} \abs{C-36} \amp\le 0.2\\ \abs{2\pi r-36} \amp\le 0.2 \end{align*}

To solve this we will use Fact 12.3.8 to break the absolute value inequality into a double inequality:

\begin{align*} -0.2 \amp\le 2\pi r-36 \le 0.2\\ -0.2\addright{36} \amp\le 2\pi r-36\addright{36} \le 0.2\addright{36}\\ 35.8 \amp\le 2\pi r \le 36.2\\ \divideunder{35.8}{2\pi} \amp\le \divideunder{2\pi r}{2\pi} \le \divideunder{36.2}{2\pi}\\ 5.70 \amp\le r \le 5.76\amp\text{(note: these values are rounded)} \end{align*}

This shows that the radius must be somewhere between 5.70 mm and 5.76 mm, inclusive.

The last few examples have all revolved around absolute values being less than some value. We now need to investigate what happens when we have an absolute value that is greater than a value.

Again, for a verbal approach to understanding the concept, lets try to describe “values that are more than \(4\) units from \(0\text{.}\)” We would say that those are “numbers below \(-4\) as well as numbers above \(4\text{.}\)” We will again translate each sentence into math. “Values that are more than \(4\) units from \(0\)” translates to “\(\abs{x}\gt4\text{,}\)” and the piece “numbers below \(-4\) as well as numbers above \(4\)” translates to be “\(x \lt -4 \text{ or } x \gt 4\text{.}\)”

For a graphical interpretation, let's think in terms of the “distance from zero” definition of absolute value. If

\begin{equation*} \abs{X}\ge n\text{,} \end{equation*}

where \(n\ge0\text{,}\) then we want all of the numbers, \(X\text{,}\) that are a distance \(n\) or more from \(0\text{.}\) Since we can only go left or right along the number line, this is describing all numbers below \(-n\) as well as those above \(n\text{.}\)

Figure 12.3.11. A Numberline with Points a Distance \(n\) or less from \(0\)
Remark 12.3.13.

Since Fact 12.3.12 specifies that an “absolute value greater than a number” -type inequality breaks down into an or statement, we will therefore need to find the union of the solution sets of the pieces.

Example 12.3.14.

Solve the absolute value inequalities using Fact 12.3.12.

  1. \(\displaystyle \abs{x} \ge 4\)

  2. \(\displaystyle \abs{x} \gt -2\)

  3. \(\displaystyle \abs{5x-7} \gt 7\)

  4. \(\displaystyle 2\cdot\abs{3-2x}-5\ge 13\)

Explanation
  1. The inequality \(\abs{x} \ge 4\) breaks down into a compound inequality:

    \begin{align*} x \amp \le -4 \amp\amp\text{or}\amp x \amp \ge 4 \end{align*}

    So, the solution set is \((-\infty,-4]\cup[4,\infty)\text{.}\)

  2. Fact 12.3.12 doesn't apply to the inequality \(\abs{x} \gt -2\) because the right side is negative. Instead, we will make sense of it logically. This is asking, “When is an absolute value greater than a negative number?” The answer is that absolute values are always bigger than negative numbers! So, our solution set is \((-\infty,\infty)\text{.}\)

  3. The inequality \(\abs{5x-7} \gt 7\) breaks down into a compound inequality:

    \begin{align*} 5x-7 \amp \lt -7 \amp\amp\text{or}\amp 5x-7 \amp \gt 7\\ 5x \amp \lt 0 \amp\amp\text{or}\amp 5x \amp \gt 14\\ x \amp \lt 0 \amp\amp\text{or}\amp x \amp \gt \frac{14}{5} \end{align*}

    We will write the solution set as \((-\infty,0)\cup\left(\frac{14}{5},\infty\right)\text{.}\)

  4. Before we break up the inequality \(2\cdot\abs{3-2x}-5\ge 13\) into an “or” statement, we must isolate the absolute value expression:

    \begin{align*} 2\cdot\abs{3-2x}-5\amp\ge 13\\ 2\cdot\abs{3-2x}\amp\ge 18\\ \abs{3-2x}\amp\ge 9 \end{align*}

    Now that the absolute value expression has been isolated on the left side, we can use Fact 12.3.12 to break it into an “or” statement:

    \begin{align*} 3-2x \amp\le -9\amp\amp\text{or}\amp 3-2x \amp\ge 9\\ -2x \amp\le -12 \amp\amp\text{or}\amp -2x \amp\ge 6\\ x \amp\ge 6 \amp\amp\text{or}\amp x \amp\le -3 \end{align*}

    Our final simplified solution set is \((-\infty,-3]\cup[6,\infty)\text{.}\)

Example 12.3.15.

Phuong is taking the standard climbing route on Mount Hood from Timberline Lodge up the Southside Hogsback and back down. Her altitude can be very closely modeled by an absolute value function since the angle of ascent is nearly constant. Let \(x\) represent the number of miles walked from Timberline Lodge, and let \(f(x)\) represent the altitude, in miles, after walking for a distance \(x\text{.}\) The altitude can be modeled by \(f\left(x\right)=2.1-0.3077\cdot\abs{x-3.25}\text{.}\) Note that below Timberline Lodge this model fails to be accurate.

  1. Solve the equation \(f(x)=1.1\) and interpret the results in the context of the problem.

  2. Altitude sickness can occur at altitudes above \(1.5\) miles. Set up and solve an inequality to find out how far Phuong can walk the trail and still be under \(1.5\) miles of elevation.

Explanation
  1. First, we substitute the formula for \(f(x)\) and simplify the equation.

    \begin{align*} f(x)\amp=1.1\\ 2.1-0.3077\cdot\abs{x-3.25} \amp=1.1\\ -0.3077\cdot\abs{x-3.25} \amp= -1\\ \divideunder{-0.3077\cdot\abs{x-3.25}}{-0.3077} \amp= \divideunder{-1}{-0.3077}\\ \abs{x-3.25} \amp\approx 3.25 \end{align*}

    At this point, we can use Fact 12.3.5 to rewrite the equation:

    \begin{align*} x-3.25 \amp\approx 3.25 \amp \text{or} \amp\amp x-3.25 \amp\approx -3.25\\ x \amp\approx 6.5 \amp \text{or} \amp\amp x \amp\approx 0 \end{align*}

    According to the model, Phuong will be at \(1.1\) miles of elevation after walking about \(0\) miles and about \(6.5\) miles along the trail. This seems to imply that Timberline Lodge is very close to \(1.1\) miles of elevation. In addition, it implies that the entire hike is \(6.5\) miles round trip, ending at Timberline Lodge again.

  2. The inequality we are looking for will describe when the altitude is below \(1.5\) miles. Since \(f(x)\) is the altitude, the inequality we need is:

    \begin{equation*} f(x)\lt 1.5 \end{equation*}

    To solve this, we need to input the formula and simplify before using one of the absolute value inequality rules.

    \begin{align*} f(x)\amp\lt 1.5\\ 2.1-0.3077\cdot\abs{x-3.25} \amp\lt 1.5\\ -0.3077\cdot\abs{x-3.25} \amp\lt -0.6\\ \divideunder{-0.3077\cdot\abs{x-3.25}}{-0.3077} \amp\mathbin{\highlight{\gt}} \divideunder{-0.6}{-0.3077}\\ \abs{x-3.25} \amp\gt 1.95\\ \amp\text{\{note that this value is rounded\}}\amp \end{align*}

    At this point, we can use Fact 12.3.12 to rewrite the inequality:

    \begin{align*} x-3.25 \amp\lt -1.95 \amp \text{or} \amp\amp x-3.25 \amp\gt 1.95\\ x \amp\lt 1.3 \amp \text{or} \amp\amp x \amp\gt 5.2 \end{align*}
    a Cartesian graph with the graphs of f(x)=2.1-0.3077abs(x-3.25) and y=1.1 and y=1.5;the absolute value is an upside-down V, which is highlighted above y=1.1 and below 1.5, with open circles where y=1.5
    Figure 12.3.16. \(y=f(x)\text{,}\) the Graph of the Mt Hood Ascent and Descent

    The image only shows the portion of the graph that is above Timberline Lodge, which we learned was at \(1.1\) miles in elevation in the previous part. The highlighted portions of the graph are those indicated by \(x\gt 5.2 \text{ or } x \lt 1.3\text{.}\)

    In conclusion, based both on our math and the reality of the situation, regions of the trail that are below \(1.5\) miles are those that are from Timberline Lodge (at \(0\) miles on the trail), to \(1.3\) miles along the trail and then also from \(5.2\) miles along the trail (and by now we are on our way back down) to \(6.5\) miles along the trail (back at Timberline Lodge). If we wanted to write this in interval notation, we might write \([0,1.3)\cup(5.2,6.5]\text{.}\) There is a big portion along the trail (from \(1.3\) miles to \(5.2\) miles) that Phuong will be above the \(1.5\) mile altitude and should watch for signs of altitude sickness.

Exercises 12.3.3 Exercises

Review and Warmup
1.

Solve the equation.

\(\displaystyle{ {\frac{t}{3}-4}={\frac{t}{5}} }\)

2.

Solve the equation.

\(\displaystyle{ {\frac{a}{7}-4}={\frac{a}{9}} }\)

3.

Solve the equation.

\(\displaystyle{ {0}={-7\!\left(c+9\right)} }\)

4.

Solve the equation.

\(\displaystyle{ {-36}={-4\!\left(A+3\right)} }\)

5.

Solve the equation.

\(\displaystyle{ {8C+3}={4C+8} }\)

6.

Solve the equation.

\(\displaystyle{ {4m+4}={7m+2} }\)

7.

\({58} \geq {10x-2}\)

;

8.

\({95} \geq {10x-5}\)

;

9.

\({-7} > {1-x}\)

;

10.

\({-4} > {2-x}\)

;

Solving Absolute Value Equations Algebraically
11.
  1. Write the equation \(4 = |4 x| - 6\) as two separate equations. Neither of your equations should use absolute value.

  2. Solve both equations above.

12.
  1. Write the equation \(5 = |6 x| - 4\) as two separate equations. Neither of your equations should use absolute value.

  2. Solve both equations above.

13.
  1. Write the equation \(\displaystyle \left| 6 - \frac{r}{3} \right| = 7\) as two separate equations. Neither of your equations should use absolute value.

  2. Solve the equation \(\displaystyle \left| 6 - \frac{r}{3} \right| = 7\text{,}\) possibly by solving each equation from part a.

14.
  1. Write the equation \(\displaystyle \left| 6 - \frac{r}{7} \right| = 5\) as two separate equations. Neither of your equations should use absolute value.

  2. Solve the equation \(\displaystyle \left| 6 - \frac{r}{7} \right| = 5\text{,}\) possibly by solving each equation from part a.

15.
  1. Verify that the value \(-1\) is a solution to the absolute value equation \(\abs{\frac{x-3}{2}}=2\text{.}\)

  2. Verify that the value \(\frac{2}{3}\) is a solution to the absolute value equation \(\abs{6x-5}\lt 4\text{.}\)

16.
  1. Verify that the value \(8\) is a solution to the absolute value equation \(\abs{\frac{1}{2}x-2}=2\text{.}\)

  2. Verify that the value \(6\) is a solution to the absolute value equation \(\abs{7-2x}\ge 5\text{.}\)

17.

Solve the following equation.

\(\displaystyle{ \left\lvert 8 x - 2 \right\rvert = 9 }\)

18.

Solve the following equation.

\(\displaystyle{ \left\lvert 9 x - 9 \right\rvert = 3 }\)

19.

Solve the equation \(\left\lvert 5 x + 2\right\rvert =17\text{.}\)

20.

Solve the equation \(\left\lvert 2 x - 1\right\rvert =11\text{.}\)

21.

Solve: \(\left\lvert b \right\rvert = 1\)

22.

Solve: \(\left\lvert b \right\rvert = 8\)

23.

Solve: \(\left\lvert t - 3 \right\rvert = 11\)

24.

Solve: \(\left\lvert t - 7 \right\rvert = 15\)

25.

Solve: \(\left\lvert 2x + 5 \right\rvert = 11\)

26.

Solve: \(\left\lvert 2x + 3 \right\rvert = 15\)

27.

Solve: \(\displaystyle \left\lvert\frac{2 y - 7}{3}\right\rvert = 3\)

28.

Solve: \(\displaystyle \left\lvert\frac{2 y - 5}{5}\right\rvert = 3\)

29.

Solve the equation: \(\left\lvert a \right\rvert = -10\)

30.

Solve the equation: \(\left\lvert b \right\rvert = -4\)

31.

Solve: \(\left\lvert b + 4 \right\rvert = 0\)

32.

Solve: \(\left\lvert t + 2 \right\rvert = 0\)

33.

Solve: \(\left\lvert 4 - 3t \right\rvert = 10\)

34.

Solve: \(\left\lvert 2 - 3x \right\rvert = 14\)

35.

Solve the equation: \(\left\lvert\frac{1}{2}x + 3\right\rvert = 5\)

36.

Solve the equation: \(\left\lvert\frac{1}{4}y + 7\right\rvert = 3\)

37.

Solve: \(\left\lvert0.5- 0.2y\right\rvert = 2\)

38.

Solve: \(\left\lvert0.1- 0.5a\right\rvert = 5\)

39.

Solve: \(\left\lvert b + 7\right\rvert - 2 = 4\)

40.

Solve: \(\left\lvert b + 5\right\rvert - 4 = 4\)

41.

Solve: \(\left\lvert2 t - 10\right\rvert + 1 = 1\)

42.

Solve: \(\left\lvert4 t - 8\right\rvert + 7 = 7\)

43.

Solve: \(\left\lvert x + 3 \right\rvert + 9 = 6\)

44.

Solve: \(\left\lvert x + 1 \right\rvert + 4 = 2\)

45.

Solve: \(\left\lvert 8 y + 7\right\rvert + 9 = 4\)

46.

Solve: \(\left\lvert 8 y + 3\right\rvert + 10 = 6\)

47.

Solve the equation by inspection (meaning in your head).

\(\displaystyle{\left\lvert 4x + 16\right\rvert = 0 }\)

48.

Solve the equation by inspection (meaning in your head).

\(\displaystyle{\left\lvert 4x + 12\right\rvert = 0 }\)

Testing Possible Solutions
49.

Decide whether the given value for the variable is a solution.

  1. \(\left|x-3\right| \leq 3\qquad x = 2\)

    The given value

    • is

    • is not

    a solution.

  2. \(\left|1x-\frac{3}{4}\right| \geq 3\qquad x = -4\)

    The given value

    • is

    • is not

    a solution.

  3. \(\left|3t-6\right| \gt 1\qquad t = 6\)

    The given value

    • is

    • is not

    a solution.

  4. \(\left|1\!\left(z-1\right)\right| \lt 9\qquad z = \pi\)

    The given value

    • is

    • is not

    a solution.

50.

Decide whether the given value for the variable is a solution.

  1. \(\left|x-4\right| \leq 9\qquad x = 6\)

    The given value

    • is

    • is not

    a solution.

  2. \(\left|\frac{3}{4}x-\frac{1}{9}\right| \geq 7\qquad x = 5\)

    The given value

    • is

    • is not

    a solution.

  3. \(\left|9t-6\right| \gt 9\qquad t = 4\)

    The given value

    • is

    • is not

    a solution.

  4. \(\left|6\!\left(z-4\right)\right| \lt 7\qquad z = \pi\)

    The given value

    • is

    • is not

    a solution.

Solving Absolute Value Inequalities Algebraically
51.

Solve the inequality.

\(\displaystyle{ {\left|\frac{5-x}{7}\right|} \geq 3 }\)

52.

Solve the inequality.

\(\displaystyle{ {\left|\frac{6-x}{4}\right|} \geq 9 }\)

53.

Solve the inequality.

\(\displaystyle{ {\left|9-7x\right|} \geq 14 }\)

54.

Solve the inequality.

\(\displaystyle{ {\left|6-7x\right|} \geq 6 }\)

55.

Solve the inequality.

\(\displaystyle{ {\left|8x-3\right|} \lt 12 }\)

56.

Solve the inequality.

\(\displaystyle{ {\left|x-9\right|} \lt 4 }\)

57.

Solve the inequality.

\(\displaystyle{ {\left|\frac{x+2}{6}\right|} \leq 10 }\)

58.

Solve the inequality.

\(\displaystyle{ {\left|\frac{x+3}{3}\right|} \leq 15 }\)

59.

Solve the inequality.

\(\displaystyle{ {\left|x-4\right|} > 14 }\)

60.

Solve the inequality.

\(\displaystyle{ {\left|x-5\right|} > 11 }\)

61.

Solve the inequality.

\(\displaystyle{ {\left|2-6x\right|} \lt 5 }\)

62.

Solve the inequality.

\(\displaystyle{ {\left|8-7x\right|} \lt 11 }\)

63.

Solve the inequality.

\(\displaystyle{ 16 - \left\lvert8x + 1\right\rvert \leq 1 }\)

64.

Solve the inequality.

\(\displaystyle{ 16 - \left\lvert8x + 4\right\rvert \leq 6 }\)