Skip to main content

Section 13.2 Radical Expressions and Rational Exponents

Recall that in Remark 13.1.21, we learned to calculate the cube root of a number, say \(\sqrt[3]{8}\text{,}\) we can type 8^(1/3) into a calculator. This suggests that \(\sqrt[3]{8}=8^{\sfrac{1}{3}}\text{.}\) In this section, we will learn why this is true, and how to simplify expressions with rational exponents.

Many learners will find a review of exponent rules to be helpful before continuing with the current section. Section 6.1 covers an introduction to exponent rules, and there is more in Section 6.2. The basic rules are summarized in List 6.2.14. These rules are still true and we can use them throughout this section whenever they might help.

Subsection 13.2.1 Radical Expressions and Rational Exponents

Compare the following calculations:

\begin{align*} \sqrt{9}\cdot\sqrt{9}\amp=3\cdot3\amp9^{\sfrac{1}{2}}\cdot9^{\sfrac{1}{2}}\amp=9^{\sfrac{1}{2}+\sfrac{1}{2}}\\ \amp=9\amp\amp=9^{1}\\ \amp\amp\amp=9 \end{align*}

If we rewrite the above calculations with exponents, we have:

\begin{align*} \left(\sqrt{9}\right)^2\amp=9\amp\left(9^{\sfrac{1}{2}}\right)^2\amp=9 \end{align*}

Since \(\sqrt{9}\) and \(9^{\sfrac{1}{2}}\) are both positive, and squaring either of them generates the same number, we conclude that

\begin{equation*} \sqrt{9}=9^{\sfrac{1}{2}} \end{equation*}

We can verify this result by entering 9^(1/2) into a calculator, and we get 3. In general for any non-negative real number \(a\text{,}\) we have:

\begin{equation*} \sqrt{a}=a^{\sfrac{1}{2}} \end{equation*}

Similarly, when \(a\) is non-negative we can prove:

\begin{align*} \sqrt[3]{a}\amp=a^{\sfrac{1}{3}}\amp\sqrt[4]{a}\amp=a^{\sfrac{1}{4}}\amp\sqrt[5]{a}\amp=a^{\sfrac{1}{5}}\amp\cdots \end{align*}

Let's summarize this information with a new exponent rule.

Warning 13.2.2. Exponents on Negative Bases.

Some computers and calculators follow different conventions when there is an exponent on a negative base. To see an example of this, visit WolframAlpha and try entering cuberoot(-8), and then try (-8)^(1/3), and you will get different results. cuberoot(-8) will come out as \(-2\text{,}\) but (-8)^(1/3) will come out as a certain non-real complex number. Most likely, the calculator you are using does behave as in Fact 13.2.1, but you should confirm this.

With this relationship, we can re-write radical expressions as expressions with rational exponents.

Example 13.2.3.

Evaluate \(\sqrt[4]{9}\) with a calculator. Round your answer to two decimal places.

Since \(\sqrt[4]{9}=9^{\sfrac{1}{4}}\text{,}\) we press the following buttons on a calculator to get the value: 9^(1/4). So, we see that \(\sqrt[4]{9}\approx1.73\text{.}\)

For many examples that follow, we will not need a calculator. We will, however, need to recognize the roots in Table 13.2.4.

Table 13.2.4. Small Roots of Appropriate Natural Numbers
Square Roots Cube Roots \(4^{th}\)-Roots \(5^{th}\)-Roots Roots of Powers of \(2\)
\(\sqrt{1}=1\) \(\sqrt[3]{1}=1\) \(\sqrt[4]{1}=1\) \(\sqrt[5]{1}=1\)
\(\sqrt{4}=2\) \(\sqrt[3]{8}=2\) \(\sqrt[4]{16}=2\) \(\sqrt[5]{32}=2\) \(\sqrt{4}=2\)
\(\sqrt{9}=3\) \(\sqrt[3]{27}=3\) \(\sqrt[4]{81}=3\) \(\sqrt[3]{8}=2\)
\(\sqrt{16}=4\) \(\sqrt[3]{64}=4\) \(\sqrt[4]{16}=2\)
\(\sqrt{25}=5\) \(\sqrt[3]{125}=5\) \(\sqrt[5]{32}=2\)
\(\sqrt{36}=6\) \(\sqrt[6]{64}=2\)
\(\sqrt{49}=7\) \(\sqrt[7]{128}=2\)
\(\sqrt{64}=8\) \(\sqrt[8]{256}=2\)
\(\sqrt{81}=9\) \(\sqrt[9]{512}=2\)
\(\sqrt{100}=10\) \(\sqrt[10]{1024}=2\)
\(\sqrt{121}=11\)
\(\sqrt{144}=12\)
Example 13.2.5.

Convert the radical expression \(\sqrt[3]{5}\) into an expression with a rational exponent and simplify it if possible.

\(\sqrt[3]{5}=5^{\sfrac{1}{3}}\text{.}\) No simplification is possible since the cube root of \(5\) is not a perfect cube radicand appearing in Table 13.2.4.

Example 13.2.6.

Write the expressions in radical form using Fact 13.2.1 and simplify the results.

  1. \(\displaystyle 4^{\sfrac{1}{2}}\)
  2. \(\displaystyle (-9)^{\sfrac{1}{2}}\)
  3. \(\displaystyle -16^{\sfrac{1}{4}}\)
  4. \(\displaystyle 64^{-\sfrac{1}{3}}\)
  5. \(\displaystyle (-27)^{\sfrac{1}{3}}\)
  6. \(\displaystyle 3^{\sfrac{1}{2}}\cdot3^{\sfrac{1}{2}}\)
  7. \(\displaystyle 12^0\)
Explanation
  1. \(\displaystyle \begin{aligned}[t] 4^{\sfrac{1}{2}}\amp=\sqrt{4}\\ \amp=2 \end{aligned}\)

  2. \(\begin{aligned}[t] (-9)^{\sfrac{1}{2}}\amp=\sqrt{-9} \end{aligned}\)This value is non-real.

  3. Without parentheses around \(-16\text{,}\) the negative sign in this problem should be left out of the radical.

    \(\begin{aligned}[t] -16^{\sfrac{1}{4}}\amp=-\sqrt[4]{16}\\ \amp=-2 \end{aligned}\)

  4. \(\displaystyle \begin{aligned}[t] 64^{-\sfrac{1}{3}}\amp=\frac{1}{64^{\sfrac{1}{3}}}\\ \amp=\frac{1}{\sqrt[3]{64}}\\ \amp=\frac{1}{4} \end{aligned}\)

  5. \(\displaystyle \begin{aligned}[t] (-27)^{\sfrac{1}{3}}\amp=\sqrt[3]{-27}\\ \amp=-3 \end{aligned}\)

  6. \(\displaystyle \begin{aligned}[t] 3^{\sfrac{1}{2}}\cdot3^{\sfrac{1}{2}}\amp=\sqrt{3}\cdot\sqrt{3}\\ \amp=\sqrt{3\cdot 3}\\ \amp=\sqrt{9}\\ \amp=3 \end{aligned}\)

  7. \(\displaystyle \begin{aligned}[t] 12^0\amp=1 \end{aligned}\)

Fact 13.2.1 applies to variables in expressions just as much as it does to numbers.

Remark 13.2.7.

In general, it is easier to do algebra with rational exponents on variables than with radicals of variables. You should use Fact 13.2.1 to convert from rational exponents to radicals on variables only as a last step in simplifying.

Example 13.2.8.

Write the expressions as simplified as they can be using radicals.

  1. \(\displaystyle 2x^{-\sfrac{1}{2}}\)

  2. \(\displaystyle (5x)^{\sfrac{1}{3}}\)

  3. \(\displaystyle \left(-27x^{12}\right)^{\sfrac{1}{3}}\)

  4. \(\displaystyle \left(\frac{16x}{81y^8}\right)^{\sfrac{1}{4}}\)

Explanation
  1. Note that in this example the exponent is only applied to the \(x\text{.}\) Making this type of observation should be our first step for each of these exercises.

    \begin{align*} 2x^{-\sfrac{1}{2}}\amp=\frac{2}{x^{\sfrac{1}{2}}} \amp\amp\text{by the \knowl{./knowl/item-exponent-rules-negative-exponent-definition.html}{\text{Negative Exponent Rule}}}\\ \amp=\frac{2}{\sqrt{x}} \amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-i.html}{\text{Radicals and Rational Exponents Rule}} \end{align*}
  2. In this exercise, the exponent applies to both the \(5\) and \(x\text{.}\)

    \begin{align*} (5x)^{\sfrac{1}{3}}\amp=\sqrt[3]{5x} \amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-i.html}{\text{Radicals and Rational Exponents Rule}} \end{align*}

    We could choose to simplify our answer in a different way. Note that neither one is technically preferred over the other except that perhaps the first way is simpler.

    \begin{align*} (5x)^{\sfrac{1}{3}}\amp=5^{\sfrac{1}{3}}x^{\sfrac{1}{3}} \amp\amp\text{by the }\knowl{./knowl/item-exponent-rules-product-to-a-power.html}{\text{Product to a Power Rule}}\\ \amp=\sqrt[3]{5}\sqrt[3]{x} \amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-i.html}{\text{Radicals and Rational Exponents Rule}} \end{align*}
  3. As in the previous exercise, we have a choice as to how to simplify this expression. Here we should note that we do know what the cube root of \(-27\) is, so we will take the path to splitting up the expression, using the Product to a Power Rule, before applying the root.

    \begin{align*} \left(-27x^{12}\right)^{\sfrac{1}{3}}\amp=(-27)^{\sfrac{1}{3}}\cdot \left(x^{12}\right)^{\sfrac{1}{3}}\amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-product-to-a-power.html}{\text{Product to a Power Rule}}\\ \amp=(-27)^{\sfrac{1}{3}}\cdot \left(x^{12\cdot\sfrac{1}{3}}\right) \amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-power-to-a-power.html}{\text{Power to a Power Rule}}\\ \amp=\sqrt[3]{-27}\cdot x^4 \amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-i.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=-3x^4 \end{align*}
  4. We'll use the exponent rule for a fraction raised to a power.

    \begin{align*} \left(\frac{16x}{81y^8}\right)^{\sfrac{1}{4}}\amp=\frac{\left(16x\right)^{\sfrac{1}{4}}}{\left(81y^8\right)^{\sfrac{1}{4}}} \amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-quotient-to-a-power.html}{\text{Quotient to a Power Rule}}\\ \amp=\frac{16^{\sfrac{1}{4}}\cdot x^{\sfrac{1}{4}}}{81^{\sfrac{1}{4}} \cdot \left(y^8\right)^{\sfrac{1}{4}}} \amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-product-to-a-power.html}{\text{Product to a Power Rule}}\\ \amp=\frac{16^{\sfrac{1}{4}}\cdot x^{\sfrac{1}{4}}}{81^{\sfrac{1}{4}}\cdot y^2}\\ \amp=\frac{\sqrt[4]{16}\cdot \sqrt[4]{x}}{\sqrt[4]{81}\cdot y^2} \amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-i.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=\frac{2\sqrt[4]{x}}{3y^2} \end{align*}

Fact 13.2.1 describes what can be done when there is a fractional exponent and the numerator is a \(1\text{.}\) The numerator doesn't have to be a \(1\) though and we need guidance for that situation.

Remark 13.2.10.

By Fact 13.2.9, there are two ways to express \(a^{\sfrac{m}{n}}\) as a radical, both

\begin{align*} a^{\sfrac{m}{n}}\amp=\sqrt[n]{a^m}\amp\amp\text{and}\amp a^{\sfrac{m}{n}}\amp=\left(\sqrt[n]{a}\right)^m \end{align*}

There are different times to use each formula. In general, use \(a^{\sfrac{m}{n}}=\sqrt[n]{a^m}\) for variables and \(a^{\sfrac{m}{n}}=\left(\sqrt[n]{a}\right)^m\) for numbers.

Example 13.2.11.
  1. Consider the expression \(27^{\sfrac{4}{3}}\text{.}\) Use both versions of Fact 13.2.9 to explain part of Remark 13.2.10.

  2. Consider the expression \(x^{\sfrac{4}{3}}\text{.}\) Use both versions of Fact 13.2.9 to explain the other part of Remark 13.2.10.

Explanation
  1. The expression \(27^{\sfrac{4}{3}}\) can be evaluated in the following two ways by Fact 13.2.9.

    \begin{align*} 27^{\sfrac{4}{3}}\amp=\sqrt[3]{27^4}\amp\amp\text{by the first part of the } \knowl{./knowl/fact-rational-exponent-rule-ii.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=\sqrt[3]{531441}\\ \amp=81\\ \amp\amp\text{or}\\ 27^{\sfrac{4}{3}}\amp=\left(\sqrt[3]{27}\right)^4\amp\amp\text{by the second part of the } \knowl{./knowl/fact-rational-exponent-rule-ii.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=3^4\\ \amp=81 \end{align*}

    The calculations using \(a^{\sfrac{m}{n}}=\left(\sqrt[n]{a}\right)^m\) worked with smaller numbers and can be done without a calculator. This is why we made the general recommendation in Remark 13.2.10.

  2. The expression \(x^{\sfrac{4}{3}}\) can be evaluated in the following two ways by Fact 13.2.9.

    \begin{align*} x^{\sfrac{4}{3}}\amp=\sqrt[3]{x^4}\amp\amp\text{by the first part of } \knowl{./knowl/fact-rational-exponent-rule-ii.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp\amp\text{or}\\ x^{\sfrac{4}{3}}\amp=\left(\sqrt[3]{x}\right)^4\amp\amp\text{by the second part of the } \knowl{./knowl/fact-rational-exponent-rule-ii.html}{\text{Radicals and Rational Exponents Rule}} \end{align*}

    In this case, the simplification using \(a^{\sfrac{m}{n}}=\sqrt[n]{a^m}\) is just shorter looking and easier to write. This is why we made the general recommendation in Remark 13.2.10.

Example 13.2.12.

Simplify the expressions using Fact 13.2.9.

  1. \(\displaystyle 8^{\sfrac{2}{3}}\)

  2. \(\displaystyle 16^{-\sfrac{3}{2}}\)

  3. \(\displaystyle -16^{\sfrac{3}{4}}\)

  4. \(\displaystyle \left(-\frac{27}{64}\right)^{\sfrac{2}{3}}\)

Explanation
  1. \begin{align*} 8^{\sfrac{2}{3}}\amp=\left(\sqrt[3]{8}\right)^2\amp\amp\text{by the second part of the } \knowl{./knowl/fact-rational-exponent-rule-ii.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=2^2\\ \amp=4 \end{align*}
  2. \begin{align*} 16^{-\sfrac{3}{2}}\amp=\frac{1}{16^{\sfrac{3}{2}}}\amp\amp\text{by the }\knowl{./knowl/item-exponent-rules-negative-exponent-definition.html}{\text{Negative Exponent Rule}}\\ \amp=\frac{1}{\left(\sqrt{16}\right)^3}\amp\amp\text{by the second part of the } \knowl{./knowl/fact-rational-exponent-rule-ii.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=\frac{1}{4^3}\\ \amp=\frac{1}{64} \end{align*}
  3. \begin{align*} -16^{\sfrac{3}{4}}\amp=-\left(\sqrt[4]{16}\right)^3 \amp\amp\text{by the second part of the } \knowl{./knowl/fact-rational-exponent-rule-ii.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=-2^3\\ \amp=-8 \end{align*}
  4. In this problem, the negative can be associated with either the numerator or the denominator, but not both. We choose the numerator.

    \begin{align*} \left(-\frac{27}{64}\right)^{\sfrac{2}{3}}\amp=\left(\sqrt[3]{-\frac{27}{64}}\right)^2 \amp\amp\text{by the second part of the } \knowl{./knowl/fact-rational-exponent-rule-ii.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=\left(\frac{\sqrt[3]{-27}}{\sqrt[3]{64}}\right)^2\\ \amp=\left(\frac{-3}{4}\right)^2\\ \amp=\frac{(-3)^2}{(4)^2}\\ \amp=\frac{9}{16} \end{align*}

Subsection 13.2.2 More Expressions with Rational Exponents

To recap, here is a “complete” list of exponent rules.

List 13.2.13. Complete List of Exponent Rules
Product Rule

\(\displaystyle a^{n} \cdot a^{m} = a^{n+m}\)

Power to a Power Rule

\(\displaystyle (a^{n})^{m} = a^{n\cdot m}\)

Product to a Power Rule

\(\displaystyle (ab)^{n} = a^{n} \cdot b^{n}\)

Quotient Rule

\(\dfrac{a^{n}}{a^{m}} = a^{n-m}\text{,}\) as long as \(a \neq 0\)

Quotient to a Power Rule

\(\left( \dfrac{a}{b} \right)^{n} = \dfrac{a^{n}}{b^{n}}\text{,}\) as long as \(b \neq 0\)

Zero Exponent Rule

\(a^{0} = 1\) for \(a\neq0\)

Negative Exponent Rule

\(\displaystyle a^{-n} = \frac{1}{a^n}\)

Negative Exponent Reciprocal Rule

\(\displaystyle \frac{1}{a^{-n}} = a^n\)

Negative Exponent on Fraction Rule

\(\displaystyle \left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}\)

Radical and Rational Exponent Rule

\(\displaystyle x^{\sfrac{1}{n}}=\sqrt[n]{x}\)

Radical and Rational Exponent Rule

\(x^{\sfrac{m}{n}}=\left(\sqrt[n]{x}\right)^m\text{,}\) usually for numbers

Radical and Rational Exponent Rule

\(x^{\sfrac{m}{n}}=\sqrt[n]{x^m}\text{,}\) usually for variables

Example 13.2.14.

Use exponent properties in List 13.2.13 to simplify the expressions, and write all final versions using radicals.

  1. \(\displaystyle 2w^{\sfrac{7}{8}}\)

  2. \(\displaystyle \frac{1}{2}y^{-\sfrac{1}{2}}\)

  3. \(\displaystyle \left(27b\right)^{\sfrac{2}{3}}\)

  4. \(\displaystyle \left(-8p^6\right)^{\sfrac{5}{3}}\)

  5. \(\displaystyle \sqrt{x^3}\cdot\sqrt[4]{x}\)

  6. \(\displaystyle h^{\sfrac{1}{3}}+h^{\sfrac{1}{3}}+h^{\sfrac{1}{3}}\)

  7. \(\displaystyle \frac{\sqrt{z}}{\sqrt[3]{z}}\)

  8. \(\displaystyle \sqrt{\sqrt[4]{q}}\)

  9. \(\displaystyle 3\left(c^{\sfrac{1}{2}}+d^{\sfrac{1}{2}}\right)^2\)

  10. \(\displaystyle 3\left(4k^{\sfrac{2}{3}}\right)^{-\sfrac{1}{2}}\)

Explanation
  1. \begin{align*} 2w^{\sfrac{7}{8}}\amp=2\sqrt[8]{w^7}\amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-ii.html}{\text{Radicals and Rational Exponents Rule}} \end{align*}
  2. \begin{align*} \frac{1}{2}y^{-\sfrac{1}{2}}\amp=\frac{1}{2}\frac{1}{y^{\sfrac{1}{2}}}\amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-negative-exponent-definition.html}{\text{Negative Exponent Rule}}\\ \amp=\frac{1}{2}\frac{1}{\sqrt{y}}\amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-ii.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=\frac{1}{2\sqrt{y}} \end{align*}
  3. \begin{align*} \left(27b\right)^{\sfrac{2}{3}}\amp=\left(27\right)^{\sfrac{2}{3}}\cdot\left(b\right)^{\sfrac{2}{3}}\amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-product-to-a-power.html}{\text{Product to a Power Rule}}\\ \amp=\left(\sqrt[3]{27}\right)^2\cdot\sqrt[3]{b^2}\amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-ii.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=3^2\cdot\sqrt[3]{b^2}\\ \amp=9\sqrt[3]{b^2} \end{align*}
  4. \begin{align*} \left(-8p^6\right)^{\sfrac{5}{3}}\amp=\left(-8\right)^{\sfrac{5}{3}}\cdot\left(p^6\right)^{\sfrac{5}{3}}\amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-product-to-a-power.html}{\text{Product to a Power Rule}}\\ \amp=\left(-8\right)^{\sfrac{5}{3}}\cdot p^{6\cdot\sfrac{5}{3}}\amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-power-to-a-power.html}{\text{Power to a Power Rule}}\\ \amp=\left(\sqrt[3]{-8}\right)^5\cdot p^{10}\amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-ii.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=(-2)^5\cdot p^{10}\\ \amp=-32p^{10} \end{align*}
  5. \begin{align*} \sqrt{x^3}\cdot\sqrt[4]{x}\amp=x^{\sfrac{3}{2}}\cdot x^{\sfrac{1}{4}}\amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-ii.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=x^{\sfrac{3}{2}+\sfrac{1}{4}}\amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-product.html}{\text{Product Rule}}\\ \amp=x^{\sfrac{6}{4}+\sfrac{1}{4}}\\ \amp=x^{\sfrac{7}{4}}\\ \amp=\sqrt[4]{x^7}\amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-ii.html}{\text{Radicals and Rational Exponents Rule}} \end{align*}
  6. \begin{align*} h^{\sfrac{1}{3}}+h^{\sfrac{1}{3}}+h^{\sfrac{1}{3}}\amp=3h^{\sfrac{1}{3}}\\ \amp=3\sqrt[3]{h}\amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-i.html}{\text{Radicals and Rational Exponents Rule}} \end{align*}
  7. \begin{align*} \frac{\sqrt{z}}{\sqrt[3]{z}}\amp=\frac{z^{\sfrac{1}{2}}}{z^{\sfrac{1}{3}}}\amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-i.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=z^{\sfrac{1}{2}-\sfrac{1}{3}}\amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-quotient.html}{\text{Quotient Rule}}\\ \amp=z^{\sfrac{3}{6}-\sfrac{2}{6}}\\ \amp=z^{\sfrac{1}{6}}\\ \amp=\sqrt[6]{z}\amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-i.html}{\text{Radicals and Rational Exponents Rule}} \end{align*}
  8. \begin{align*} \sqrt{\sqrt[4]{q}}\amp=\sqrt{q^{\sfrac{1}{4}}}\amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-i.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=\left(q^{\sfrac{1}{4}}\right)^{\sfrac{1}{2}}\amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-i.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=q^{\sfrac{1}{4}\cdot\sfrac{1}{2}}\amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-power-to-a-power.html}{\text{Power to a Power Rule}}\\ \amp=q^{\sfrac{1}{8}}\\ \amp=\sqrt[8]{q}\amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-i.html}{\text{Radicals and Rational Exponents Rule}} \end{align*}
  9. \begin{alignat*}{2} 3\left(c^{\sfrac{1}{2}}+d^{\sfrac{1}{2}}\right)^2\amp=3\left(c^{\sfrac{1}{2}}+d^{\sfrac{1}{2}}\right)\left(c^{\sfrac{1}{2}}+d^{\sfrac{1}{2}}\right)\\ \amp=3\left(\left(c^{\sfrac{1}{2}}\right)^2+2c^{\sfrac{1}{2}}\cdot d^{\sfrac{1}{2}}+\left(d^{\sfrac{1}{2}}\right)^2\right)\\ \amp=3\left(c^{\sfrac{1}{2}\cdot 2}+2c^{\sfrac{1}{2}}\cdot d^{\sfrac{1}{2}}+d^{\sfrac{1}{2}\cdot 2}\right)\\ \amp=3\left(c+2c^{\sfrac{1}{2}}\cdot d^{\sfrac{1}{2}}+d\right)\\ \amp=3\left(c+2(cd)^{\sfrac{1}{2}}+d\right)\amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-product-to-a-power.html}{\text{Product to a Power Rule}}\\ \amp=3\left(c+2\sqrt{cd}+d\right)\amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-i.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=3c+6\sqrt{cd}+3d \end{alignat*}
  10. \begin{align*} 3\left(4k^{\sfrac{2}{3}}\right)^{-\sfrac{1}{2}}\amp=\frac{3}{\left(4k^{\sfrac{2}{3}}\right)^{\sfrac{1}{2}}}\amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-negative-exponent-definition.html}{\text{Negative Exponent Rule}}\\ \amp=\frac{3}{4^{\sfrac{1}{2}}\left(k^{\sfrac{2}{3}}\right)^{\sfrac{1}{2}}}\amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-product-to-a-power.html}{\text{Product to a Power Rule}}\\ \amp=\frac{3}{4^{\sfrac{1}{2}}k^{\sfrac{2}{3}\cdot\sfrac{1}{2}}}\amp\amp\text{by the } \knowl{./knowl/item-exponent-rules-power-to-a-power.html}{\text{Power to a Power Rule}}\\ \amp=\frac{3}{4^{\sfrac{1}{2}}k^{\sfrac{1}{3}}}\\ \amp=\frac{3}{\sqrt{4}\sqrt[3]{k}}\amp\amp\text{by the } \knowl{./knowl/fact-rational-exponent-rule-i.html}{\text{Radicals and Rational Exponents Rule}}\\ \amp=\frac{3}{2\sqrt[3]{k}} \end{align*}

We will end with a short application on rational exponents. Kepler's Laws of Orbital Motion 1  describe how planets orbit stars and how satellites orbit planets. In particular, his third law has a rational exponent, which we will now explore.

Example 13.2.15. Kepler and the Satellite.

Kepler's third law of motion says that for objects with a roughly circular orbit that the time (in hours) that it takes to make one full revolution around the planet, \(T\text{,}\) is proportional to three-halves power of the distance (in kilometers) from the center of the planet to the satellite, \(r\text{.}\) For the Earth, it looks like this:

\begin{equation*} T=\frac{2\pi}{\sqrt{G\cdot M_E}}r^{\sfrac{3}{2}} \end{equation*}

In this case, both \(G\) and \(M_E\) are constants. \(G\) stands for the universal gravitational constant 2  where \(G\) is about \(8.65\times 10^{-13}\) km3kg·h2 and \(M_E\) stands for the mass of the Earth 3  where \(M_E\) is about \(5.972\times 10^{24}\) kg. Inputting these values into this formula yields a simplified version that looks like this:

\begin{equation*} T\approx2.76\times 10^{-6}r^{\sfrac{3}{2}} \end{equation*}

Most satellites orbit in what is called low Earth orbit 4 , including the international space station, which orbits at about 340 km above from Earth's surface. The Earth's average radius is about 6380 km. Find the period of the international space station.

Explanation

The formula has already been identified, but the input takes just a little thought. The formula uses \(r\) as the distance from the center of the Earth to the satellite, so to find \(r\) we need to combine the radius of the Earth and the distance to the satellite above the surface of the Earth.

\begin{align*} r\amp=340+6380\\ \amp=6720 \end{align*}

Now we can input this value into the formula and evaluate.

\begin{align*} T\amp\approx2.76\cdot 10^{-6}r^{\sfrac{3}{2}}\\ \amp\approx2.76\cdot 10^{-6}(\substitute{6720})^{\sfrac{3}{2}}\\ \amp\approx2.76\cdot 10^{-6}\left(\sqrt{6720}\right)^3\\ \amp\approx1.52 \end{align*}

The formula tells us that it takes a little more than an hour and a half for the ISS to orbit the Earth! That works out to 15 or 16 sunrises per day.

Exercises 13.2.3 Exercises

Review and Warmup
1.

Evaluate the following.

  1. \(\displaystyle{ \sqrt{64} }\) =

  2. \(\displaystyle{ \sqrt{1} }\) =

  3. \(\displaystyle{ \sqrt{16} }\) =

2.

Evaluate the following.

  1. \(\displaystyle{ \sqrt{81} }\) =

  2. \(\displaystyle{ \sqrt{64} }\) =

  3. \(\displaystyle{ \sqrt{49} }\) =

3.

Evaluate the following.

  1. \(\displaystyle{ \sqrt{{{\frac{121}{25}}}} }\) =

  2. \(\displaystyle{ \sqrt{{-{\frac{1}{4}}}} }\) =

4.

Evaluate the following.

  1. \(\displaystyle{ \sqrt{{{\frac{144}{49}}}} }\) =

  2. \(\displaystyle{ \sqrt{{-{\frac{64}{121}}}} }\) =

5.

Evaluate the following.

Do not use a calculator.

  1. \(\displaystyle{ \sqrt{4} }\) =

  2. \(\displaystyle{ \sqrt{0.04} }\) =

  3. \(\displaystyle{ \sqrt{400} }\) =

6.

Evaluate the following.

Do not use a calculator.

  1. \(\displaystyle{ \sqrt{9} }\) =

  2. \(\displaystyle{ \sqrt{0.09} }\) =

  3. \(\displaystyle{ \sqrt{900} }\) =

7.

Use the properties of exponents to simplify the expression.

\({r^{7}}\cdot{r^{20}}\)

8.

Use the properties of exponents to simplify the expression.

\({x^{9}}\cdot{x^{14}}\)

9.

Use the properties of exponents to simplify the expression.

\(\displaystyle{\left(r^{7}\right)^{5}}\)

10.

Use the properties of exponents to simplify the expression.

\(\displaystyle{\left(t^{8}\right)^{12}}\)

11.

Use the properties of exponents to simplify the expression.

\(\left(\displaystyle\frac{5x^{8}}{6}\right)^{3}=\)

12.

Use the properties of exponents to simplify the expression.

\(\left(\displaystyle\frac{9x^{9}}{10}\right)^{2}=\)

13.

Use the properties of exponents to simplify the expression.

\(\left(-8y^{12}\right)^3\)

14.

Use the properties of exponents to simplify the expression.

\(\left(-5x^{2}\right)^3\)

15.

Use the properties of exponents to simplify the expression.

\(\displaystyle\frac{{x^{6}}}{{x^{2}}}=\)

16.

Use the properties of exponents to simplify the expression.

\(\displaystyle\frac{{y^{7}}}{{y^{6}}}=\)

17.

Rewrite the expression simplified and using only positive exponents.

\(y^{-12}\cdot y^{11}=\)

18.

Rewrite the expression simplified and using only positive exponents.

\(y^{-5}\cdot y^{2}=\)

19.

Rewrite the expression simplified and using only positive exponents.

\((-7r^{-17})\cdot (4r^{13})=\)

20.

Rewrite the expression simplified and using only positive exponents.

\((-5r^{-11})\cdot (-9r^{3})=\)

Calculations
21.

Without using a calculator, evaluate the expression.

  1. \(\displaystyle{ 81^{\frac{1}{2}}= }\)

  2. \(\displaystyle{ (-81)^{\frac{1}{2}}= }\)

  3. \(\displaystyle{ -81^{\frac{1}{2}}= }\)

22.

Without using a calculator, evaluate the expression.

  1. \(\displaystyle{ 100^{\frac{1}{2}}= }\)

  2. \(\displaystyle{ (-100)^{\frac{1}{2}}= }\)

  3. \(\displaystyle{ -100^{\frac{1}{2}}= }\)

23.

Without using a calculator, evaluate the expression.

  1. \(\displaystyle{ 8^{\frac{1}{3}}= }\)

  2. \(\displaystyle{ (-8)^{\frac{1}{3}}= }\)

  3. \(\displaystyle{ -8^{\frac{1}{3}}= }\)

24.

Without using a calculator, evaluate the expression.

  1. \(\displaystyle{ 8^{\frac{1}{3}}= }\)

  2. \(\displaystyle{ (-8)^{\frac{1}{3}}= }\)

  3. \(\displaystyle{ -8^{\frac{1}{3}}= }\)

25.

Without using a calculator, evaluate the expression.

\(\displaystyle{ 64^{-\frac{2}{3}} = }\)

26.

Without using a calculator, evaluate the expression.

\(\displaystyle{ 81^{-\frac{1}{2}} = }\)

27.

Without using a calculator, evaluate the expression.

\(\displaystyle{ \left(\frac{1}{81}\right)^{-\frac{1}{4}} = }\)

28.

Without using a calculator, evaluate the expression.

\(\displaystyle{ \left(\frac{1}{27}\right)^{-\frac{1}{3}} = }\)

29.

Without using a calculator, evaluate the expression.

\(\displaystyle{ \sqrt[4]{16^{3}}= }\)

30.

Without using a calculator, evaluate the expression.

\(\displaystyle{ \sqrt[5]{32^{4}}= }\)

31.

Without using a calculator, evaluate the expression.

\(\displaystyle{ \sqrt[3]{64}= }\)

32.

Without using a calculator, evaluate the expression.

\(\displaystyle{ \sqrt[3]{64}= }\)

33.

Without using a calculator, evaluate the expression.

  1. \(\displaystyle{\sqrt[3]{1} =}\)

  2. \(\displaystyle{\sqrt[3]{-1} =}\)

  3. \(\displaystyle{-\sqrt[3]{1} =}\)

34.

Without using a calculator, evaluate the expression.

  1. \(\displaystyle{\sqrt[3]{8} =}\)

  2. \(\displaystyle{\sqrt[3]{-8} =}\)

  3. \(\displaystyle{-\sqrt[3]{8} =}\)

35.

Without using a calculator, evaluate the expression.

  1. \(\displaystyle{\sqrt[4]{16} =}\)

  2. \(\displaystyle{\sqrt[4]{-16} =}\)

  3. \(\displaystyle{-\sqrt[4]{16} =}\)

36.

Without using a calculator, evaluate the expression.

  1. \(\displaystyle{\sqrt[4]{16} =}\)

  2. \(\displaystyle{\sqrt[4]{-16} =}\)

  3. \(\displaystyle{-\sqrt[4]{16} =}\)

37.

Use a calculator to evaluate the expression as a decimal to four significant digits.

\(\displaystyle{\sqrt[4]{13^{3}}=}\)

38.

Use a calculator to evaluate the expression as a decimal to four significant digits.

\(\displaystyle{\sqrt[5]{8^{2}}=}\)

39.

Without using a calculator, evaluate the expression.

\(\displaystyle{ \sqrt[3]{{-1}}= }\) .

40.

Without using a calculator, evaluate the expression.

\(\displaystyle{ \sqrt[3]{{-{\frac{27}{125}}}}= }\) .

Convert Radicals to Fractional Exponents
41.

Use rational exponents to write the expression.

\(\displaystyle{\sqrt[3]{x}}\)=

42.

Use rational exponents to write the expression.

\(\displaystyle{\sqrt[8]{y}}\)=

43.

Use rational exponents to write the expression.

\(\displaystyle{\sqrt[5]{6 z + 8}=}\)

44.

Use rational exponents to write the expression.

\(\displaystyle{\sqrt[4]{3 t + 2}=}\)

45.

Use rational exponents to write the expression.

\(\displaystyle{ \sqrt[8]{r} = }\)

46.

Use rational exponents to write the expression.

\(\displaystyle{ \sqrt[5]{m} = }\)

47.

Use rational exponents to write the expression.

\(\displaystyle{ \frac{1}{\sqrt{a^{3}}} = }\)

48.

Use rational exponents to write the expression.

\(\displaystyle{ \frac{1}{\sqrt[7]{b^{5}}} = }\)

Convert Fractional Exponents to Radicals
49.

Convert the expression to radical notation.

\(\displaystyle{{c^{\frac{3}{4}}}}\) =

50.

Convert the expression to radical notation.

\(\displaystyle{{x^{\frac{2}{3}}}}\) =

51.

Convert the expression to radical notation.

\(\displaystyle{{y^{\frac{7}{2}}}}\) =

52.

Convert the expression to radical notation.

\(\displaystyle{{z^{\frac{5}{2}}}}\) =

53.

Convert the expression to radical notation.

\(\displaystyle{{19^{\frac{1}{6}}t^{\frac{5}{6}}}}\) =

54.

Convert the expression to radical notation.

\(\displaystyle{{8^{\frac{1}{5}}r^{\frac{4}{5}}}}\) =

55.

Write the expression as an equivalent expression in the form \(x^n\text{.}\) Simplify your answer as much as possible, and enter your answer as a fraction.

\(\sqrt[3]{x^{8}} = x^n\) for \(n =\)

56.

Write the expression as an equivalent expression in the form \(x^n\text{.}\) Simplify your answer as much as possible, and enter your answer as a fraction.

\(\sqrt[3]{x^{10}} = x^n\) for \(n =\)

57.

Convert \(b^{-\frac{4}{7}}\) to a radical expression.

58.

Convert \(c^{-\frac{3}{4}}\) to a radical expression.

59.

Convert \(5^{\frac{1}{7}} x^{\frac{5}{7}}\) to a radical expression.

60.

Convert \(5^{\frac{1}{8}} y^{\frac{3}{8}}\) to a radical expression.

Simplifying Expressions with Rational Exponents
61.

Simplify the expression, answering with rational exponents and not radicals.

\(\displaystyle{\sqrt[5]{z}\,\sqrt[5]{z}=}\)

62.

Simplify the expression, answering with rational exponents and not radicals.

\(\displaystyle{\sqrt[11]{t}\,\sqrt[11]{t}=}\)

63.

Simplify the expression, answering with rational exponents and not radicals.

\(\displaystyle{\sqrt{9 r^{3}}=}\)

64.

Simplify the expression, answering with rational exponents and not radicals.

\(\displaystyle{\sqrt[4]{16 m}=}\)

65.

Simplify the expression, answering with rational exponents and not radicals.

\(\displaystyle{\frac{\sqrt[3]{125 a}}{\sqrt[6]{a^{5}}}=}\)

66.

Simplify the expression, answering with rational exponents and not radicals.

\(\displaystyle{\frac{\sqrt[3]{27 b}}{\sqrt[6]{b^{5}}}=}\)

67.

Simplify the expression, answering with rational exponents and not radicals.

\(\displaystyle{\frac{\sqrt{49 c}}{\sqrt[10]{c^{3}}}=}\)

68.

Simplify the expression, answering with rational exponents and not radicals.

\(\displaystyle{\frac{\sqrt{25 x^{3}}}{\sqrt[10]{x}}=}\)

69.

Simplify the expression, answering with rational exponents and not radicals.

\(\displaystyle{\sqrt[5]{y}\cdot\sqrt[10]{y^{3}}=}\)

70.

Simplify the expression, answering with rational exponents and not radicals.

\(\displaystyle{\sqrt[5]{z}\cdot\sqrt[10]{z^{3}}=}\)

71.

Simplify the expression, answering with rational exponents and not radicals.

\(\displaystyle{\sqrt[3]{\sqrt[4]{t}}=}\)

72.

Simplify the expression, answering with rational exponents and not radicals.

\(\displaystyle{\sqrt[5]{\sqrt[3]{r}}=}\)

73.

Simplify the expression, answering with rational exponents and not radicals.

\(\displaystyle{\sqrt{x}\sqrt[7]{x}=}\)

74.

Simplify the expression, answering with rational exponents and not radicals.

\(\displaystyle{\sqrt{n}\sqrt[8]{n}=}\)